
AN EFFICIENT ALGORITHM TO ACCESS WEB LOG PATTERN USING WAP
TREE-MINE

Karthikeswaran1 D., Dinakar2 S.
1Jayaram College of Engineering and Technology, Trichy.

1E-mail: karthids@gmail.com.
2Jayaram College of Engineering and Technology, Trichy.

2E-mail: s.dinakar27@gmail.com.

Abstract

World Wide Web is a huge data repository and is growing with the explosive rate of about 1 million pages a day,
web log records each access of the web page and number of entries in the web logs is increasing rapidly. These
web logs, when mined properly can provide useful information for decision-making. Sequential pattern mining
discovers frequent user access patterns from web logs. Since Apriori-like sequential pattern mining techniques
requires expensive multiple scans of database. But, recently a novel data structure, known as Web Access Pattern
Tree (or WAP-tree), was developed. This proposed method an efficient WAP-tree mining algorithm, known as
DLT-mine (Doubly Linked Tree algorithm). Proposed recursive algorithm uses this doubly Linked tree to efficiently
find all access patterns that satisfy user specified criteria. This mining algorithm is faster than the other Apriori-based
mining algorithms.

Keywords: Web mining; Pattern discovery.

I. INTRODUCTION

Web usage mining is used to identify user
behavior on a particular website. It performs mining on
web usage data or web logs [10]. Web usage mining
looks at the log of Web access. Web server records
each access of the web page in web logs. Number of
entries in the web logs is increasing rapidly as the
access to the web site is increasing. These web logs,
when mined properly can provide useful information for
decision-making. Most of the web logs contain
information about fields: The mined knowledge can
then be used in many practical applications, such as
improving the design of web sites, analyzing user
behaviors for personalized services, and developing
adaptive web sites according to different usage
scenarios. IP Address, User Name, Time Stamp,
Access Request, Result Status, Byte Transferred,
Referrer URL and User Agent. There are many efforts
towards mining various patterns from Web logs [3].

Web access patterns mined from Web logs can
be used for purposes like: Improving design of web
sites, used to gather business intelligence to improve
sales and advertisement, analyzing system
performance, building adaptive Web sites [3].

Mining frequent access patterns (called sequential
access pattern mining) in a sequence database was
firstly introduced by Agrawal and Srikant [1] which is

based on AprioriAll algorithm. After its introduction lots
of work was done to mine sequential pattern efficiently
AprioriAll algorithm sequence database is scanned
many times to mine sequential access pattern.

In the first scan, it finds all frequent 1-event and
forms a set of 1-event frequent sequences. In the
following scans, it generates candidate sequences from
the set of frequent sequences and checks their

supports.

The problem with AprioriAll is that it does not
perform well if the length of the access sequences and

��� ����

����������

�	

��� ��������

�������
 �������� �	

���������

�	

��� ��	����

�����

����	���	
���

Fig 1. Web log mining structure

National Journal on Electromic Sciences and Systems, Vol. 1, No.2, October 2010 40

transactions are large, which is the basic need of Web
log mining.

II. PROBLEM STATEMENT

Web log consist of many types of information
including the information about the user and the access
done by the user. We can extract the unnecessary data
and only keep the required data in the preprocessing
phase of the log mining. If each access is regarded as
event we can say that after preprocessing web log is
a sequence of events from one user or session in
timestamp ascending order.

Let E be a set of events. Then
S = e1e2 … ek ek +1 en for (1 ≤ i ≤ n) is an access
sequence and n is the length of the access sequence
called n-sequence. Remember in any access sequence
repetition is allowed i.e. ei =! ej for i =! j.

Access sequence S′ = e1′ e2′ e3′ … ek′ is called
a subsequence of s equence S and S is called the
super-sequence of sequence S′ denoted as S′ ⊆ S, if

and only if there exist 1 ≤ i1 < i2 < K …… ik ≤ n, such

that ej = eij for (1 ≤ j ≤ k). S′ is called proper

subsequence of sequence S that is S′ ⊂ S, if and only

if S′ is a subsequence of S and S′ +! S. Subsequenc

Ss = ek + 1 ek + 2 … en of S is a super sequence of

a sequence P = ek + 1 ek + 2 … em where m ≤ n then

Sp = e1 e2 …… ek is called the prefix of S with
respect to sequence P and Ss is called the suffix of
Sp. Let Web access sequence database WAS is
represented as a set S1, S2L, Sm where each
Si (1 ≤ i ≤ m) are access sequences.

Then the support of access sequence S in WAS
is defined as

Sup (s) =
| { Si | S ⊆ Si } |

m

A sequence S is said a ζ-pattern or simply (Web)

access pattern of WAS, if Sup (s) ≥ ζ . Here it is
important to remember that events can be repeated in
an access sequence or pattern, and any pattern can
get support at most once from one access sequence.

The problem of mining access pattern is: Given Web
access sequence database WAS and a support threshold
ζ, mine the complete set of ζ-pattern of WAS.

III. EFFICIENT WEB LOG MINING USING
DLT-MINE

The central theme of our algorithm is as follows:
Scan the WAS twice. In the first scan, determine the
set of frequent events. An event is called a frequent
event if and only if it appears in at least (ζ. |WAS|).
Where |WAS| denotes the number of access
sequences in WAS and ζ denote the support threshold.
In the second scan, build a doubly linked tree After
creating a doubly linked tree we recursively mine it
using conditional search to find all ζ-pattern.

The following observations are helpful in the
construction of the doubly linked tree.
1. Apriori property that if a sequence G is not a

ζ-pattern of sequence database, any
super-sequence of G cannot be a ζ-pattern of
sequence database is used. That means, if an
event e is not in the set of frequent 1-sequences,
there is no need to include e in the construction
of a doubly linked tree.

2. We create a single branch for the shared prefix
P in the tree. It helps in saving space and
support counting of any subsequence of the
prefix P.

Above observation suggest that doubly linked tree
should be defined to contain following information:

• Each node must contain event (we call it label)
and its count except the root node which have
empty label and coun t = 0. The count specifies
the number of occurrences of the corresponding
prefix ended with that event in the WAS.

• To manage the linkage and backward traversal we
need two additional pointers except the pointers
tree normally has. First, all the nodes in the tree
with the same label are linked by a queue called
event-node queue. To maintain the front of a
queue for each frequent event in the tree one
header table is maintained. Second, for backward
traversal from any intermediate node to the root
we add a pointer to the parent at each node.

Karthikeswaran et al : An Efficient Algorithm to Access Web ... 41

The tree construction process is as follows: First
of all filter out the non frequent events from each
access sequence in WAS and then insert the resulting
frequent subsequence into tree started from the root.
Considering the first event, denoted as e, increment
the count of child node with label e by 1 if there exists
one; otherwise create a child labeled by e and set the
count to 1. Then, recursively insert the rest of the
frequent subsequence to the sub tree rooted at that
child labeled e. The complete algorithm for doubly
linked tree creation is given below:

Fig. Frequent Access Sequence

Algorithm 1 (Doubly Linked Tree Construction)
Input: A Web access sequence database WAS and a
set of all possible events E.

Output: A doubly linked tree T.

Method:

Scan 1:
1. For each access sequence S of the WAS

 1.1. For each event in E

 1.1.1. For each event of an access
sequence of WAS. If selected event of access
sequence is equal to selected event of E then

 (a) event count = event count + 1

 (b) continue with the next event in E.

2. For each event in E if event qualify the
threshold add that event in the set of frequent event
FE.

Scan 2:
1. Create a root node for T

2. For each access sequence S in the access
sequence database WAS do

(a) Extract frequent subsequence S′ from S by
removing all events appearing in S but not in FE.
Let S′ = s1 s2 … sn, where si (1 ≤ i ≤ n) are
events in S′. Let current node is a pointer that
is currently pointing to the root of T.

(b) For i = 1 to n do, if current node has a child
labeled si, increase the count of si by 1 and
make current node point to si, else create a new
child node with label = si, count = 1, parent
pointer = current node and make current node
point to the new node, and insert it into the
si-queue.

3. Return (T);
After the execution of this algorithm we get

doubly linked tree. This contains all the information in
very condensed form. Now we do not need WAS
database to mine the access pattern. The length of the
tree is one plus the maximum length of the frequent
subsequences in the database. The width of the tree
that is the number of distinct leaf nodes as well as
paths in a doubly linked tree cannot be more than the
number of distinct frequent subsequences in the WAS
database. Access sequences with same prefix will
share some upper part of path from root and due to
this scheme size of the tree is much smaller than the
size of WAS database.

m wap-Data m ining

m WAP-Data m ining

42 National Journal on Electromic Sciences and Systems, Vol. 1, No.2, October 2010

Maintaining some additional links provides some
interesting properties which helps in mining frequent
access sequences.

1. For any frequent event ei, all the frequent
subsequences contain ei can be visited by
following the ei -queue, starting from the record
for ei in the header table of doubly linked tree.

2. For any node labeled ei in a doubly linked tree,
all nodes in the path from root of the tree to this
node (excluded) form a prefix sequence of ei.
The count of this node labeled ei is called the
count of the prefix sequence.

3. A path from root may have more than one node
labeled ei, thus a prefix sequence say G of ei if
it contain another prefix sequence say H of ei
then G is called the super-prefix sequence and
H is called the sub-prefix sequence. The problem
is that super-prefix sequence contributes in the
counting of sub-prefix sequence. This problem is
resolved using unsubsumed count. A prefix
sequence of ei without any super-prefix
sequences, unsubsumed count is the count of ei.
For a prefix sequence of ei with some
super-prefix sequences, the unsubsumed count of
it is the count of that sequence minus
unsubsumed counts of all its super-prefix
sequences.

4. It is very difficult to traverse from root to the node
pointed by the ei -queue because it requires
several traversal hits to get required prefix.
Parent pointer allows backward traversal from
any intermediate node pointed by ei -queue to
the root and efficiently extract the prefix
sequences.

With the above information we can apply
conditional search to mine all Web access patterns
using doubly linked tree. Conditional search means,
instead of searching all Web access patterns at a time,
it turns to search Web access patterns with same
suffix. This suffix is then used as the condition to
narrow the search space. As the suffix becomes longer,
the remaining search space becomes smaller
potentially.

The algorithm to mine all ζ-patterns is as follows:

Algorithm 2 (Mining all ζ-patterns in doubly
linked tree)

Input: a Doubly linked tree T and support threshold ζ.

Output: the complete set of ζ-patterns.

Method:

1. If doubly linked tree T has only one branch,
return all the unique combinations of nodes in that
branch

2. Initialize Web access pattern set WAP=¥õ .
Every event in T itself is a Web access pattern, insert
them into WAP

3. For each event ei in T,

(a) Construct a conditional sequence base of ei,
i.e.PS(ei), by following the ei-queue, count

conditional frequent events at the same time.

(b) If the set of conditional frequent events is not
empty, build a conditional doubly linked tree for
ei over PS(ei) using algorithm 1. Recursively
mine the conditional doubly linked tree

(c) For each Web access pattern returned from
mining the conditional doubly linked tree,
concatenate ei to it and insert it into WAP.

4. Return WAP.

IV. RESULT AND ANALYSIS

Since these web logs are in different format we
did some preprocessing work to convert this web log
into the Web Access Pattern Dataset (WASD) format.
We filter out the web logs according to our need. The
proposed algorithm is implemented in Microsoft Visual
Studio 2005 .NET and all experiments were found on
Intel Pentium running on Microsoft Window XP
profession. The web server log file size 101 KB.

As the results shows performance of the doubly
linked tree mining:

Karthikeswaran et al : An Efficient Algorithm to Access Web ... 43

Figure 2. Frequent Access Sequences.

V. CONCLUSION
In this paper, DLT- mine developed using

VB.NET for sequential access pattern from JCET web
log files. Doubly Linked Tree mining performance is
much better than Apriori Base Algorithms. Efficient web
usage mining could benefit from relating usage of the
web page to the content of web page. Some other
area of interest may be implementing Doubly Linked
mine algorithm to the distributed environment.

VI. SCREENSHOTS

Fig. Raw Web File

Fig. Export Web Log File

Fig. DLT Mine

REFERENCES
 [1] Agrawal R. & Srikant R. (1994) Fast Algorithms for

Mining Association. In Proceedings of the 20th

International Conference on Very Large Data Bases
(VLDB), Santiago, Chile, pp. 487-499, Santiago, Chile,
September 1994.

 [2] Antunes C. and Oliveira A. L. Sequential pattern
mining algorithms: Trade-offs between speed and
memory. In 2nd Workshop on Mining Graphs, Trees
and Seq. (2004).

 [3] Cooley.R, B. Mobasher, and J. Srivastava. Data
preparation for mining world wide web browsing
pattern. Knowledge and Information Systems, 1(1),
1999.

 [4] Ezeife, C. and Lu, Y. Mining web log sequential
patterns with position coded preorder linked wap-tree.
International Journal of Data Mining and Knowledge
Discovery (DMKD) Kluwer Publishers, p.5–38, 2005.

 [5] Gomathi.C., Moorthi M. & Duraiswamy K. (2008), Web
Access Pattern Algorithms in Education Domain.
Computer and information science, November 2008,
vol 1. no.4.

 [6] Gomathi.C., Moorthi M. & Duraiswamy K. (2008),
Preprocessing of Web Log Files in Web Usage Mining.

Fig. Import Web Log File

44 National Journal on Electromic Sciences and Systems, Vol. 1, No.2, October 2010

The ICFAI journal of Information Technology, Vol. 4,
No. 1, pp. 55-66.

 [7] Hafidh Ba-Omar, IIias Petrounias & Fahad Anwar.
(ICALT 2007). A framework for using web –usage
mining to personalize E-learning, seventh IEEE
international conference on Advanced
Technologies(ICALT 2007).

 [8] Han, J., Pei, J., Mortazavi-Asl, B. and Pinto, H.
Prefixspan: Mining sequential patterns efficiently by
prefix-projected pattern growth. In Proceedings of the
001International Conference on Data Engineering
(ICDE 01), p.214–224, 2001.

 [9] Jiawei Han, Micheline Kamber, Data Mining: Concepts
and Techniques , Mrogan kaufmann Publication,2002.

[10] Kosala R, and H. Blockeel. (2000). Web Mining
Research: A Survey. In ACM SIGKDD Explorations,
Vol.2, pp. 1-15.

[11] Pei.J, J. Han, B. Mortazavi-asl, and H. Zhu. (2000).
Mining Access Patterns Efficiently from Web Logs.
InProceedings of the 4th Pacific-Asia Conference on
Knowledge Discovery and Data Mining (PAKDD),
Kyoto, Japan, pp. 396- 407.

[12] Pujari, A. : Data Mining Techniques ,Universities
Press, India, February 2001.

[13] Raymond Kosala, Hendrik Blockeel, Web Mining
Research: A Survey, ACM SIGKDD, July 2000.

[14] Srikant.R and R. Agrawal. Mining quantitative
association rules in large relational tables. In Proc.
1996 ACM-SIGMOD Int. Conf. Management of Data,
pages 1-12, Montreal, Canada, June 1996

[15] Srivastava.J, R.Cooley, M. Deshpande, and P.-N. Tan.
(2000). Web Usage Mining:Discover and Applications
of Usage Patterns from Web Data. In ACM SIGKDD
Explorations, Vol. 1, No. 2, pp.12-23.

[16] Suneetha K. R., Dr. R. Krishnamoorthi, Identifying User
Behavior by Analyzing Web Server Access Log File,
IJCSNS International Journal of Computer Science and
Network Security, VOL.9 No.4, April 2009.

[17] Vasumathi.D, A .Govardhan, BC-WASPT : Web Acess
Sequential Pattern Tree Mining, International Journal
of Computer Science and Network Security, VOL.9
No.6, June 2009.

[18] Yu Hirate and Hayato Yamana,” Generalized
Sequential Pattern Mining with Item Intervals”, 10th
Pacific-Asia Conference on Knowledge Discovery and
Data Mining (PAKDD 2006), Singapore, April 9-12,
2006, journal of computers, vol. 1, no. 3, june 2006.

[19] Zaki, M. SPADE: An efficient algorithm for mining
frequent sequences. Machine Learning, p.31–60, 2001.

Karthikeswaran et al : An Efficient Algorithm to Access Web ... 45

